
9.4.6 Trade-off method for utility functions 

All previously described methods for determining utility functions suffer from the 
same issue; they assume that the decision maker’s answers to questions about cer-
tainty equivalents to simple lotteries etc. can be interpreted in a sense that is in line 
with expected utility. In Chapter 13, we will see that this assumption is critical and 
that decision makers usually give distorted answers even if only simple lotteries 
are involved. At this point, however, we would like to stress a problem that is im-
portant to all utility elicitation methods discussed so far. When making intuitive 
decisions (like when answering questions for certainty equivalents to simple lotte-
ries), small probabilities have a larger impact on the evaluation of a lottery than 
expected utility theory prescribes. Other probabilities are systematically over- or 
under-weighted as well. Neglecting these distortions results in systematically dis-
torted utility functions. Bleichrodt et al. (2001) analyze how one can adjust an-
swers that suffer from systematically distorted probabilities and hence elicit undis-
torted utility functions. The exact approach, however, is beyond the scope of this 
book and we refer the reader to the original paper. 

An alternative is to apply methods which do not suffer from these biases. The 
trade-off method (which has nothing in common with the trade-off method from 
Chapter 6 except for the name) by Wakker and Deneffe (1996) is one of these me-
thods. Compared with previous methods, it is more complicated. This is however 
more than offset as distorted probabilities no longer result in a distorted utility 
function. 

The basic idea of the trade-off method for eliciting utility functions is similar to 
the method of equal utility differences. The decision maker produces a sequence 
of consequences which all have the same utility difference. While the method of 
equal utility differences breaks down if the probability p = 0.5 is systematically 
distorted (e.g. is treated like a probability of 0.4), the trade-off method is immune 
to such a bias. 

The trade-off method requires two consequences xa and xb with xb f xa to be 
chosen such that they – in the best case – lie outside of the interval [xmin, xmax] of 
relevant consequences (the two consequences xa and xb are only needed for com-
parison reasons; we assume they are less than xmin). 

Again, we set x0=xmin and the decision maker is asked for a consequence x1 that 
makes him indifferent between the lotteries (x0, p; xb, 1–p) and (x1, p; xa, 1–p). 
Presumably, a probability of p = 0.5 will make this question particularly easy to 
answer. However, the trade-off method works with every other p. Some algebra 
shows that this indifference statement implies u(x1) – u(x0) =  (1–p)/p·(u(xb)–
u(xa)). The utility difference between x1 and x0 is given by the value (1–
p)/p·(u(xb)–u(xa)). This value is unknown and furthermore it is affected by the po-
tentially distorted probabilies p and (1–p). However, it is not necessary to know 
this value of the utility difference because the next step delivers a similar insight. 
We ask the decision maker for a consequence x2 that makes him indifferent be-
tween (x1, p; xb, 1–p) and (x2, p; xa, 1–p). From this indifference, we deduce that 



the utility difference between x2 and x1 is also given by the same value  
u(x2) – u(x1) = (1–p)/p·(u(xb)–u(xa)). In particular we conclude that  
u(x2) – u(x1) = u(x1) – u(x0) and this holds true independent of the exact choice of 
the potentially distorted probability p. The next steps are obvious now: we pro-
duce a whole series of indifference statements (xi, p; xb, 1–p) ~ (xi+1, p; xa, 1–p) 
which all result in equal utility indifferences. A convenient choice of xa and xb (the 
closer they are, the smaller the distances in the sequence of consequences become) 
makes it possible for us to reach (or exceed) the consequence xmax within four to 
five steps, as in the method of equal utility differences. The normalization of the 
utility function is then as usual. 

We want to illustrate the trade-off method with an example. Assume a decision 
maker wants to know his utility function on the interval 
[xmin = €1,000, xmax = €10,000]. We set xa = €100 and xb = €500, so that these two 
consequences lie outside of the previously specified interval. The next steps are 
shown in Figure 9-18. In a first step, we ask for a consequence x1 that makes the 
decision maker indifferent between the lotteries (€1,000, 30%; €500, 70%) and 
(x1, 30%; €100, 70%). As already noted, we expect a probability of p = 0.5 to ease 
the whole procedure for the decision maker. For didactical reasons, however, we 
here chose p = 0.3. Assume the decision maker states x1 = €2,500. Then, in a 
second step, we ask for x2 that makes him indifferent between the lotteries 
(€2,500, 30%; €500, 70%) and (x2, 30%; €100, 70%). We obtain a further value, 
say, x2 = €6,000 that we can use for the next step. Assume the decision maker re-
veals x3 = €11,000; we then stop the elicitation process as €11,000 exceeds 
xmax = €10,000. 
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Figure 9-18: Lotteries and indifference statements in the trade-off method 



The resulting points on the decision maker’s utility function are shown in Fig-
ure 9-19. To facilitate the understanding, we have plotted two utility axes: on the 
left hand side, a non-normalized, arbitrarily scaled utility axis and on the right 
hand side a utility axis normalized on the interval [xmin = €1,000, x3 = €11,000]. 
You can see that, on the non-normalized utility axis, the scaled utility difference 
(1–p)/p·[u(xb)–u(xa)] resulting from the utility difference u(xb)–u(xa) and our 
choice of the lottery’s probability p = 0.3 determine the equal utility difference be-
tween all three elicited utility values u(x1), u(x2) and u(x3). The well-known nor-
malization then leads to the utility values u(x1) = 1/3, u(x2) = 2/3 and u(x3) = 1 as 
is depicted on the normalized utility axis on the right hand side. 
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Figure 9-19: Utility function elicited with the trade-off method 

 


